skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lentz, Steven J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Along‐shelf wind stresses drive substantial along‐coast variations in sea level that result in significant along‐coast pressure gradients in the Middle Atlantic Bight (MAB) at time scales from days to years. Forty years of sea‐level data and reanalysis wind stresses are examined to determine the characteristics and dynamics of pressure gradients along the New England and Central MAB coasts. Along‐coast dynamic sea level (pressure) gradients often exceed 5 cm/100 km at daily time scales, 2 cm/100 km at monthly time scales and 0.2 cm/100 km at yearly time scales. Along‐shelf wind stresses account for more than 50% of the along‐coast pressure gradient variance at daily and monthly time scales and more than 25% at yearly time scales. Pressure gradients along the New England coast are primarily driven by local wind stresses along the New England shelf, while pressure gradients along the Central MAB shelf are driven by both local wind stresses along the Central MAB shelf and remote wind stresses along the New England shelf. A steady depth‐average model (Csanady, 1978,https://doi.org/10.1175/1520‐0485(1978)008<0047:tatw>2.0.co;2) accurately reproduces the wind‐driven along‐coast pressure gradients in both regions. The along‐coast pressure gradients typically oppose the local wind stress and, in the along‐shelf momentum balance, are 50%–80% of the along‐shelf wind stress over the inner shelf (water depth 15 m). 
    more » « less
  2. Abstract The characteristics and dynamics of depth-average along-shelf currents at monthly and longer time scales are examined using 17 years of observations from the Martha’s Vineyard Coastal Observatory on the southern New England inner shelf. Monthly averages of the depth-averaged along-shelf current are almost always westward, with the largest interannual variability in winter. There is a consistent annual cycle with westward currents of 5 cm s −1 in summer decreasing to 1–2 cm s −1 in winter. Both the annual cycle and interannual variability in the depth-average along-shelf current are predominantly driven by the along-shelf wind stress. In the absence of wind forcing, there is a westward flow of ∼5 cm s −1 throughout the year. At monthly time scales, the depth-average along-shelf momentum balance is primarily between the wind stress, surface gravity wave–enhanced bottom stress, and an opposing pressure gradient that sets up along the southern New England shelf in response to the wind. Surface gravity wave enhancement of bottom stress is substantial over the inner shelf and is essential to accurately estimating the bottom stress variation across the inner shelf. Significance Statement Seventeen years of observations from the Martha’s Vineyard Coastal Observatory on the inner continental shelf of southern New England reveal that the depth-average along-shelf current is almost always westward and stronger in summer than in winter. Both the annual cycle and variations around the annual cycle are primarily driven by the along-shelf wind stress. The wind stress is opposed by a pressure gradient that sets up along the southern New England shelf and a surface gravity wave–enhanced bottom stress. The surface gravity wave enhancement of bottom stress is substantial in less than 30 m of water and is essential in determining the variation of the along-shelf current across the inner shelf. 
    more » « less
  3. null (Ed.)
  4. Abstract Internal waves can influence water properties in coastal ecosystems through the shoreward transport and mixing of subthermocline water into the nearshore region. In June 2014, a field experiment was conducted at Dongsha Atoll in the northern South China Sea to study the impact of internal waves on a coral reef. Instrumentation included a distributed temperature sensing system, which resolved spatially and temporally continuous temperature measurements over a 4‐km cross‐reef section from the lagoon to 50‐m depth on the fore reef. Our observations show that during summer, internal waves shoaling on the shallow atoll regularly transport cold, nutrient‐rich water shoreward, altering near‐surface water properties on the fore reef. This water is transported shoreward of the reef crest by tides, breaking surface waves and wind‐driven flow, where it significantly alters the water temperature and nutrient concentrations on the reef flat. We find that without internal wave forcing on the fore reef, temperatures on the reef flat could be up to 2.0°C ± 0.2°C warmer. Additionally, we estimate a change in degree heating weeks of 0.7°C‐weeks warmer without internal waves, which significantly increases the probability of a more severe bleaching event occurring at Dongsha Atoll. Furthermore, using nutrient samples collected on the fore reef during the study, we estimated that instantaneous onshore nitrate flux is about four‐fold higher with internal waves than without internal waves. This work highlights the importance of internal waves as a physical mechanism shaping the nearshore environment, and likely supporting resilience of the reef. 
    more » « less